LESSON PLAN

FACULTY NAME: BHUPENDER SINGH (Theory) & VIVEK DESWAL (Practical)

DISCIPLINE: MECHANICAL ENGINEERING

SUBJECT: STRENGTH OF MATERIALS (3rd Sem.)

LESSON PLAN DURATION: 15 WEEKS

WORK LOAD (LECTURE/PRACTICAL)/WEEK: (3L, 4P)

WEEK	LECTURE DAY	THEORY	PRACTICAL
	DAI	Topic (Including Assignment/test)	Торіс
1 st week	1 st day	Unit 1: Introduction of Stresses and Strains, basics concept of load.	1.Tensile test on bars of Mild steel and Aluminum.
	2 nd day	Tensile, compressive, shear stress	
	3 rd day	Linear, lateral, shear, volumetric strain Concept of elasticity, elasticlimit, limit of proportionality	
2 nd week	1 st day	Hooks law, elastic constant, nominal strain	2.Bending test on a steel bar or a wooden beam
	2 nd day	stress strain curve for ductile and brittle material	of a wooden beam
	3 rd day	Yield point, plasticstage,ultimate and breaking stress Percentage elongation, proof and working stress	
3 rd week	1 st day	Factorofsafety, poison'sratio, thermal stress and strain, introduction to principal stresses	Revision of practical no 1
	2 nd day	Longitudinal and circumferential stresses Inseamlessthin walled cylindricalshells	
	3 rd day	Unit2: Resilience strain energy, resilience, proof resilience and modulus of resilience	
4th week	1 st day	Strain energy due to direct stress and shear stress	Revision of practical 2
	2 nd day	Stress due to gradual, sudden and falling load	
	3 rd day	Unit3: Moment of Inertia conceptof moment of inertia	
5th week	1 st day	Theorem of perpendicular and parallel axis	Practical 3 (a): Impact test on metals Izod test
	2 nd day	Second moment of area of rectangle ,triangle, circleandnumerical of these	
	3 rd day	Second moment of area for L,T,I and numerical Section modulus	

6th week	1 st day	Numerical problems and revision	Practical 3 (b): Impact test
	2 nd day	Unit4: Bending Moment and Shearing Fours Concept of various types of beams and loading	on metals Charpy test
	3 rd day	Concept of end supports, hingedand fixed, Concept of bending moment and shear force	
7th week	1 st day	B.M and S.Fdiagram for cantilever beam	Practical 4:Torsion test of solid specimen of circular
	2 nd day	B.M.andS.F diagram for simply supported beam	section of different metals for determining modulus of rigidity.
	3 rd day	B.Mand S.F diagram of cantilever and simply supportedbeams withorwithout overhang and U.D.L	
8th week	1 st day	Numerical problems	Revision of practical 3
	2 nd day	Unit5: Bending Stresses concepts of bending stresses	
	3 rd day	Theoryofsimplebending , Derivation of bending equation	
9th week	1 st day	Concept of moment of resistance	Revision of practical 4
	2 nd day	Bending stress diagram, section modulus for rectangles	
	3 rd day	Section modulus for circular and symmetrical Isection, Bendingstressin beams of rectangular	
10th week	1 st day	Bendingstressincircular andT section	Practical 5:To plot a graph between load and extension and to determine the stiffness of a helical
	2 nd day	Numerical and revision	spring.
	3 rd day	Unit6: Columns Concept of column, modes of failure, Types of columns, modes of failure of column	
11th week	1 st day	Buckling load, crushing load, slenderness ratio	Practical 6:Hardness test on different metals.
	2 nd day	Effective length, end restraints	
	3 rd day	Factor effecting strength of a column, Strength of column by Euler formula without derivation	

12th week	1 st day	Rankin gourdan formula	Revision of practical 5
week	2 nd day	Unit7: Torsion concept of torsion, difference between torque andtorsion	
	3 rd day	Derivation of torsion equation, Useof torsion equation for circular shaft (solid and hollow)	
13th week	1 st day	Comparison of solid and hollow shaft	Revision of practical 6
	2 nd day	Power transmitted by shaft	
	3 rd day	Concept of mean and maximum torque	
14th week	1 st day	Unit8: Springs Closed coil helical springs subjected to axial load	Preparation of viva questions
	2 nd day	Calculation of stress deformation	-
	3 rd day	Stiffness, angle of twist, strain energy	-
15th week	1 st day	Numerical problems	Preparation of viva questions
	2 nd day	Determination of number of plates of laminated springs	
	3 rd day	Revision and discussion on problems	-