LESSON PLAN FACULTY NAME: BHUPENDER SINGH (Theory) & VIVEK DESWAL (Practical) DISCIPLINE: MECHANICAL ENGINEERING **SUBJECT: STRENGTH OF MATERIALS (3rd Sem.)** **LESSON PLAN DURATION: 15 WEEKS** WORK LOAD (LECTURE/PRACTICAL)/WEEK: (3L, 4P) | WEEK | LECTURE
DAY | THEORY | PRACTICAL | |----------------------|---------------------|---|--| | | DAI | Topic (Including Assignment/test) | Торіс | | 1 st week | 1 st day | Unit 1: Introduction of Stresses and Strains, basics concept of load. | 1.Tensile test on bars of Mild steel and Aluminum. | | | 2 nd day | Tensile, compressive, shear stress | | | | 3 rd day | Linear, lateral, shear, volumetric strain Concept of elasticity,
elasticlimit, limit of
proportionality | | | 2 nd week | 1 st day | Hooks law, elastic constant, nominal strain | 2.Bending test on a steel bar
or a wooden beam | | | 2 nd day | stress strain curve for ductile and brittle
material | of a wooden beam | | | 3 rd day | Yield point, plasticstage,ultimate and breaking stress Percentage elongation, proof and working stress | | | 3 rd week | 1 st day | Factorofsafety, poison'sratio, thermal stress and strain, introduction to principal stresses | Revision of practical no 1 | | | 2 nd day | Longitudinal and circumferential stresses
Inseamlessthin walled
cylindricalshells | | | | 3 rd day | Unit2: Resilience
strain energy, resilience, proof resilience and modulus of resilience | | | 4th week | 1 st day | Strain energy due to direct stress and shear stress | Revision of practical 2 | | | 2 nd day | Stress due to gradual, sudden and falling load | | | | 3 rd day | Unit3: Moment of Inertia conceptof moment of inertia | | | 5th week | 1 st day | Theorem of perpendicular and parallel axis | Practical 3 (a): Impact test
on metals
Izod test | | | 2 nd day | Second moment of area of rectangle ,triangle, circleandnumerical of these | | | | 3 rd day | Second moment of area for L,T,I and numerical Section modulus | | | 6th week | 1 st day | Numerical problems and revision | Practical 3 (b): Impact test | |--------------|---------------------|--|---| | | 2 nd day | Unit4: Bending Moment and Shearing Fours Concept of various types of beams and loading | on metals
Charpy test | | | 3 rd day | Concept of end supports, hingedand fixed, Concept of bending moment and shear force | | | 7th week | 1 st day | B.M and S.Fdiagram for cantilever beam | Practical 4:Torsion test of solid specimen of circular | | | 2 nd day | B.M.andS.F diagram for simply supported beam | section of different metals for
determining
modulus of rigidity. | | | 3 rd day | B.Mand S.F diagram of cantilever and simply supportedbeams withorwithout overhang and U.D.L | | | 8th week | 1 st day | Numerical problems | Revision of practical 3 | | | 2 nd day | Unit5: Bending Stresses
concepts of bending stresses | | | | 3 rd day | Theoryofsimplebending , Derivation of bending equation | | | 9th week | 1 st day | Concept of moment of resistance | Revision of practical 4 | | | 2 nd day | Bending stress diagram, section modulus for rectangles | | | | 3 rd day | Section modulus for circular and symmetrical Isection, Bendingstressin beams of rectangular | | | 10th
week | 1 st day | Bendingstressincircular andT section | Practical 5:To plot a graph
between load and extension
and to determine the stiffness
of a helical | | | 2 nd day | Numerical and revision | spring. | | | 3 rd day | Unit6: Columns Concept of column, modes of failure, Types of columns, modes of failure of column | | | 11th
week | 1 st day | Buckling load, crushing load, slenderness ratio | Practical 6:Hardness test on different metals. | | | 2 nd day | Effective length, end restraints | | | | 3 rd day | Factor effecting strength of a column, Strength of column by Euler formula without derivation | | | 12th
week | 1 st day | Rankin gourdan formula | Revision of practical 5 | |--------------|---------------------|--|-------------------------------| | week | 2 nd day | Unit7: Torsion
concept of torsion, difference between torque
andtorsion | | | | 3 rd day | Derivation of torsion equation, Useof torsion equation for circular shaft (solid and hollow) | | | 13th
week | 1 st day | Comparison of solid and hollow shaft | Revision of practical 6 | | | 2 nd day | Power transmitted by shaft | | | | 3 rd day | Concept of mean and maximum torque | | | 14th
week | 1 st day | Unit8: Springs
Closed coil helical springs subjected to axial load | Preparation of viva questions | | | 2 nd day | Calculation of stress deformation | - | | | 3 rd day | Stiffness, angle of twist, strain energy | - | | 15th
week | 1 st day | Numerical problems | Preparation of viva questions | | | 2 nd day | Determination of number of plates of laminated springs | | | | 3 rd day | Revision and discussion on problems | - |