Lesson Plan Name of Faculty : Sonu Discipline : Mechanical Engg. Semester : 3rd Subject : Thermodynamics-I Lesson Plan Duration : 14 weeks Work Load (Lecture/Practical) per week (in hours) : Lectures-03, Practicals-02 | Week | Theory | | Practical | | |-----------------|-----------------|--|--|--| | | Lecture
day | Topic(including assignment/test) | Topic | | | 1 st | 1 st | Fundamental Concepts:- Thermodynamic state and system, boundary, surrounding, universe | Determination of temperature by 1.1 Thermocouple 1.2 Pyrometer | | | | 2 nd | thermodynamic systems – closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic | 1.3 Infrared thermometer | | | | 3 rd | properties of system – intensive
and extensive, thermodynamic
equilibrium, quasi – static process,
reversible and irreversible processes | | | | 2 nd | 1 st | Zeroth law of thermodynamics,
definition of properties like pressure,
volume, temperature, enthalpy and
internal energy | Revision. | | | | 2 nd | Laws of Perfect Gases: Definition of gases, explanation of perfect gas laws – Boyle's law, Charle's law, Avagadro's law | | | | | 3 rd | Regnault's law, Universal gas constant,
Characteristic
gas constants and its derivation | | | | 3 rd | 1 st | Specific heat at constant pressure, specific heat at constant volume of a gas, derivation of an expression for specific heats with characteristics | Demonstration of mountings and accessories on a boiler. | | | | 2 nd | Simple numerical problems on gas equation. | | | | | 3 rd | Thermodynamic Processes: Types of thermodynamic processes – isochoric, isobaric | | | | 4 th | 1 st | isothermal, adiabatic, isentropic | Revision. | | | | 2 nd | polytropic and throttling processes, | | | | | | equations representing the | | |------------------------|-----------------|--|--| | | 3 rd | processes Derivation of work done, change in internal energy | | | 5 th | 1 st | change in entropy, rate of heat transfer for the above processes | Study the working of Lancashire boiler and Nestler boiler. | | | 2 nd | Laws of Thermodynamics: Laws of conservation of energy, first law of thermodynamics (Joule's experiment) and its limitations | | | | 3 rd | Application of first law of thermodynamics to Non-flow systems – Constant volume | | | 6 th | 1 st | Constant pressure, Adiabatic and polytropic processes | Revision. | | | 2 nd | steady flow energy equation, Application of steady flow energy equation for turbines, pump | | | | 3 rd | boilers, compressors, nozzles, and evaporators | | | 7 th | 1 st | Heat source and sink, statements of second laws of thermodynamics: Kelvin Planck's statement | Study of working of high pressure boiler. | | | 2 nd | Classius statement, equivalency of statements | | | | 3 rd | Perpetual motion Machine of first kind, second kind, Carnot engine | | | 8 th | 1 st | Introduction of third law of thermodynamics, concept of irreversibility and concept of entropy | Revision | | | 2 nd | Ideal and Real Gases:- Concept of ideal gas, enthalpy | | | | 3 rd | specific heat capacities of an ideal gas | | | 9 th | 1 st | P – V – T surface of an ideal gas, triple point | Study of boilers . | | | 2 nd | real gases, Vander-Wall's equation | | | | 3 rd | Properties of Steam :- Formation of steam and related terms, thermodynamic properties of steam | | | 10 th | 1 st | steam tables, sensible heat, latent heat, internal energy of steam, entropy of water, entropy of steam | Revision | | | 2 nd | T- S diagrams, Mollier diagram (H – S Chart), Expansion of steam, Hyperbolic | | | | 3 rd | reversible adiabatic and throttling processes, determination of quality of | | | | | steam (dryness fraction) | | |------------------|-----------------|--|---| | 11 th | 1 st | Steam Generators: - Uses of steam, classification of boilers | Determination of Dryness fraction of steam using calorimeter. | | | 2 nd | function of various boiler mounting and accessories | g | | | 3 rd | comparison of fire tube and water tube boilers | | | 12 th | 1 st | Construction and working of Lancashire boiler | Revision | | | 2 nd | Nestler boiler, Babcock & Wilcox Boiler. Introduction to modern boilers. | | | | 3 rd | Air Standard Cycles :- Meaning of air standard cycle – its use, condition of reversibility of a cycle | | | 13 th | 1 st | Description of Carnot cycle Otto cycle, | Demonstrate the working of air compressor | | | 2 nd | Diesel cycle, simple problems on efficiency for different cycles. | - | | | 3 rd | Comparison of Otto, Diesel cycles for same compression ratio, same peak pressure developed and same heat input | | | 14 th | 1 st | Reasons for highest efficiency of Carnot cycle and all other cycles working between same temperature limits | Revision | | | 2 nd | Air Compressors: Functions of air compressor – uses of compressed air, type of air compressors | | | | 3 rd | Single stage reciprocating air compressor, its construction and working, representation of processes involved on P – V diagram, calculation of work done. | | | 15 th | 1 st | Multistage compressors – advantages over single stage compressors, use of air cooler, condition of minimum work in two stage compressor (without proof), simple problems | Revision. | | | 2 nd | Rotary compressors – types, working and construction of centrifugal compressor | | | | 3 rd | Axial flow compressor, vane type compressor | |